Test Generation and Recognition with Formal Methods

Paul E. Ammann
George Mason University
Information & Software Eng. Dept.
Fairfax, Virginia 22033 USA
pammann@gmu.edu

Abstract

The authors are part of a larger group ot the
National Institute of Standards and Technology
(NIST), George Mason University (GMU), and
the University of Maryland, Baltimore County
(UMBC). Projects directed by group members use
formal methods, particularly model checking, to
investigate the generation and recognition of test
sets for software systems. Qur positions, in or-
der of increasing potential controversy, are 1) the
use of specifications is an important complement
to code-based methods, 2) test set recognition is as
important as test set generation, and 3) in spite
of some known limitations, our generic frame-
work for testing, with a test criterion as a pa-
rameter and a model checker for an engine, is a
general approach that can handle many interest-
ing specification-based test criteria.

1. Our Relevant Work

For the context of our position, we summarize
our recent contributions to specification-based
testing using a model checker. Model checkers,
which evaluate finite state machines with respect
to temporal logic constraints, are chosen in favor
of theorem proving approaches because 1) signif-
icantly less expertise is required of the end user,
thereby enhancing automation, 2) model checkers
are enjoying an explosive growth in applicability,
and 3) the counterexamples from a model checker
may be directly interpreted as test cases.

In our original paper on the topic [4], we de-
fined mutation testing for model checking spec-
ifications, specifically SMV descriptions. We
defined one class of mutation operators that

Paul E. Black

National Institute of Standards and Technology

100 Bureau Dr., Stop 8970
Gaithersburg, Maryland 20899 USA
paul.black@nist.gov

changed the state machine description; these op-
erators result in failing tests, that is, tests that a
correct implementation must reject. We defined
another class of mutation operators that changed
the temporal logic constraints on the state ma-
chine; these operators result in passing tests, that
is, tests that a correct implementation must ac-
cept. The model checker identifies equivalent mu-
tants: these are temporal logic constraints that
are consistent. We generated tests for a small ex-
ample, ran them against a target implementation,
and measured code branch coverage.

Generating tests to “kill” all mutants is the
first test criterion we investigated. Some other
specification-based criteria are stuck-at faults [1],
CCC partitions [6], MC/DC [7], automata the-
oretic [8], branch coverage [10], disconnection or
redirection faults [11], and transition pair cover-
age [13]. Test generation then is the problem of
finding tests which fulfill the goals embodied in
the criterion. Test set recognition is the conju-
gate of test generation. Whereas test generation
asks, “What tests will satisfy the test criteria?”,
test recognition asks, “How much of the test cri-
teria do these tests satisfy?”

In follow-on work [3], we addressed test set
recognition for a refinement of the mutation anal-
ysis scheme. In particular, we defined a metric in
terms of number of mutants killed by a given test
set compared to the total number of killable mu-
tants. We showed how to turn tests from a can-
didate test set into "forced” state machines and
then use the model checker to compute the metric.
We analyzed various factors that could introduce
distortions, such as semantically equivalent mu-
tants and mutants that are killed by every test
case, were analyzed.



We analyzed different mutation operators both
theoretically and empirically [5]. For theoretical
analysis, we applied predicate differencing and a
hierarchy of fault classes [12]. To experimentally
confirm the conclusions, we generated tests us-
ing many mutation operators for three different
small examples and compared relative coverage of
the different operators. Although mutation oper-
ators do not correspond exactly to fault classes,
we found good correlation between them. We de-
fined a composite mutation operator which gave
the maximum coverage, and found a single muta-
tion operator which gave nearly-maximum cover-
age using far fewer mutants.

Although the above methods work well for
state machine specifications, most specifications
are written at higher levels in Z, UML, OCL,
SCR, etc. So to be practical, there must
be (semi-)automatic ways of extracting simpler
pieces which can be analyzed. In [2] we defined a
new algorithm to abstract a simple state machine,
focusing on some states of interest to an analyst,
from an unbounded description. We proved that
the algorithm is sound for test generation. That
is, any test produced corresponds to a passing
tests in the original unbounded description.

We also applied the work to the problem of net-
work security [14], particularly cases where con-
figuration changes on one machine can lead to vul-
nerabilities on other machines in a network. Net-
work configurations were encoded as a state ma-
chine, along with the transformations produced
by known attacks. Security policies are stated in
the temporal logic in forms such as ”Under a set of
assumptions, someone outside the firewall cannot
obtain root access on machine X.” If the config-
uration in fact allows such access given the set
of known attacks, a counterexample is produced
illustrating the attack.

In work underway, we encoded different test
criteria as temporal logic constraints. Us-
ing a model checker, we analyzed branch cov-
erage [10], uncorrelated full-predicate coverage
(similar to Multiple Condition/Decision Coverage
or MC/DC [7]), and transition-pair coverage [13],
in addition to mutation coverage. We found that
different metrics are easily encoded into temporal
logic, with some limitations, and that interesting
theoretical comparisons between metrics are fa-
cilitated by formalizing them.

To scale these methods up to problems of use-
ful size and general nature, we successfully ap-
plied them to several different examples. We
began with small, well-known examples such as
Cruise Control and Safety Injection. We also
modeled the operand stack of a Java virtual ma-
chine and several functional source code bench-
marks for unit testing, then generated good test
sets. Currently we are applying the method to a
part of a flight guidance system from an aerospace
firm and to a secure operating system add-on for
a Unix derivative.

Other Work

The earliest work we know of on generat-
ing tests using model checkers is when Callahan,
Schneider, and Easterbrook [6] mentioned that
counterexamples generated from SPIN, Mur®, or
SMYV model checkers can be used as test cases.

Engels, Feijs, and Mauw [9] named some gen-
eral concepts, such as “test purposes” (some goals
to achieve with testing) and “never-claim” (sub-
mit the negation of what you want so the model
checker finds a positive instance). They discussed
positive and negative testing. Positive testing
checks that the system does what it should, which
is appropriate for general system checks. Nega-
tive testing looks for a particular action the sys-
tem should not do. The disadvantage is that one
must specify the errors to look for, but it may be
useful in searching for particular errors.

Most recently Gargantini and Heitmeyer [10]
developed a requirements branch or case cover-
age test purpose using the SPIN or SMV model
checkers. Also conditions in requirements may be
elaborated in the test purposes to exercise bound-
ary conditions, for instance, x > y may be split
intoz >y and z = y.

2. Research Questions

In January 2000 the group held an informal
workshop at NIST. Some 20 scientists, professors,
and students spent half a day sharing their views
on the work, listing programs we need, and defin-
ing research topics and questions, such as:

1. What are the effects of semantically identi-
cal, but syntactically different specification
styles on test set quality?



2. How do we make tests observable?

3. How can we partition a huge model be-
tween light- and heavy-weight formal meth-
ods, then combine their results to get tests?

4. What are the advantages and disadvantages
for test generation or expressibility with
SMV and SPIN (CTL vs. LTL)?

5. How can (should) we trade off number of
tests and coverage?

6. What are good (semi-)automatic abstrac-
tions from large, even infinite descriptions for
test generation?

7. Can we use state machine mutations (failing
tests) to check systems for safety?

8. What are a good set of mutation operators,
e.g., for larger models.

9. How do duplicate mutants affect coverage
metrics? Do some sets of mutation operators
produce many or few duplicates?

3. Position Statement

e The use of specifications is an important
complement to code-based methods.

This is an old position, but we argue that re-
cent trends in software development and testing
make it more compelling. The traditional argu-
ment, which is still valid, is that without a speci-
fication, we do not know to test for features which
are entirely missing from the source code. More
importantly, in acceptance tests of binary pro-
grams or conformance testing without a reference
implementation, there is no source code available
at all. During rapid development it may be help-
ful to write tests in parallel with or even preceding
coding; such a model is directly supported by the
use of ”use-cases” in requirements analysis. Use-
cases are essentially system tests, and analyzing
use-cases with respect to specification-based test
metrics is an important research area. Further,
there is a body of research that aims to intro-
duce formal methods into industrial development
by amortizing the cost of developing formal spec-
ifications over other, traditionally expensive, life-
cycle phases, particularly testing. Model-checkers

are a relatively new, but powerful tool in achiev-
ing this objective.

e Test set recognition is as important as test
set generation.

There are basically two thrusts to this argu-
ment, one theoretical and the other practical.
The theoretical argument is that scientific com-
parisons between test methods benefit greatly if
a test set produced by method A can be evaluated
directly and without bias with respect to method
B. Test methods that focus purely on test gener-
ation do not satisfy this objective. The practical
argument is that industry has an enormous in-
vestment in existing test sets, primarily in regres-
sion test sets, but also in new development arti-
facts such as use-cases from requirement analysis.
To retain the value of this investment, it is much
more helpful to critique the existing artifacts with
statements of the form, ”Tests of type X and Y
are missing,” rather than merely providing a new
test set that bears no relation to the existing ones.

e In spite of known limitations, our generic
framework for testing, with a test criterion
as a parameter and a model checker for an
engine, is a general approach that can han-
dle many interesting specification-based test
criteria.

We define a model whereby a test criterion is
paired with a specification of a specific applica-
tion, and, with as much automation as possible,
test requirements specific to the application are
generated and satisfied with specific tests, either
new or old. The key is the degree of automa-
tion. We believe that using a temporal logic to
express the test requirements and a model checker
to create and/or match test cases to test require-
ments is a general purpose approach suitable for
many specification-based test methods. As de-
scribed above, this approach has been successful
for a variety of interesting test criteria. One in-
teresting aspect of this line of research has been
in discovering where the method falls short. The
significant result so far is that any test require-
ment that places constraints on pairs of tests (as
opposed to individual tests) is not well handled by
a model checker, since counterexamples are typi-
cally generated one at a time. An example is the



MC/DC metric, popular in avionic applications.
In MC/DC, pairs of tests are required to differ in
the value of exactly one condition. The research
question is how to work around this expressibility
constraint.

References

[1]

3]

[6]

Miron Abramovici, Melvin A. Breuer, and
Arthur D. Friedman. Digital System Testing
and Testable Design. IEEE Computer Soci-
ety Press, New York, N.Y., 1990.

Paul Ammann and Paul E. Black. Abstract-
ing formal specifications to generate software
tests via model checking. In Proceedings
of the 18th Digital Avionics Systems Con-
ference (DASC99), volume 2, page 10.A.6.
IEEE, October 1999. Also NIST IR 6405.

Paul E. Ammann and Paul E. Black. A
specification-based coverage metric to eval-
uate test sets. In Proceedings of Fourth
IEFEE International High-Assurance Systems
Engineering Symposium (HASE 99), pages
239-248. IEEE Computer Society, November
1999. Also NIST IR 6403.

Paul E. Ammann, Paul E. Black, and
William Majurski. Using model checking to
generate tests from specifications. In Pro-
ceedings of the Second IEEE International
Conference on Formal Engineering Methods
(ICFEM’98), pages 46-54. IEEE Computer
Society, December 1998.

Paul E. Black, Vadim Okun, and Yaacov
Yesha. Mutation operators for specifica-
tions. In 15" IEEE International Con-
ference on Automated Software Engineering
(ASE2000), October 2000. Submitted.

John Callahan, Francis Schneider, and Steve
Easterbrook. Automated software testing
using model-checking. In Proceedings 1996
SPIN Workshop, Rutgers, NJ, August 1996.
Also WVU Technical Report #NASA-IVV-
96-022.

J. J. Chilenski and S. P. Miller. Applica-
bility of modified condition/decision cover-
age to software testing. Software Engineering
Journal, pages 193-200, September 1994.

[8]

[9]

[10]

[12]

[14]

Tsun S. Chow. Testing software design mod-
eled by finite-state machines. IEEE Transac-
tions on Software Engineering, SE-4(3):178—
187, May 1978.

André Engels, Loe Feijs, and Sjouke Mauw.
Test generation for intelligent networks us-
ing model checking. In Ed Brinksma,
editor, Proceedings of the Third Interna-
tional Workshop on Tools and Algorithms
for the Construction and Analysis of Sys-
tems. (TACAS’97), volume 1217 of Lecture
Notes in Computer Science, pages 384-398.
Springer-Verlag, April 1997.

Angelo Gargantini and Constance Heit-
meyer. Using model checking to gener-
ate tests from requirements specifications.
In Proceedings of the Joint Tth FEuropean
Software Engineering Conference and 7th
ACM SIGSOFT International Symposium
on Foundations of Software FEngineering,
Toulouse, France, September 1999. To Ap-
pear.

Jens Chr. Godskesen. Fault models
for embedded systems. In Proceedings
of CHARME’99, volume 1703 of Lecture
Notes in Computer Science. Springer-Verlag,
September 1999.

D. Richard Kuhn. Fault classes and er-
ror detection in specification based testing.

ACM Transactions on Software Engineering
Methodology, 8(4), October 1999.

Jeff Offutt, Yiwei Xiong, and Shaoying Liu.
Criteria for generating specification-based
tests. In Proceedings of the Fifth IEEE
Fifth International Conference on Engineer-
ing of Complex Computer Systems (ICECCS
’99), pages 119-131, Las Vegas, NV, October
1999. IEEE Computer Society Press.

Ronald W. Ritchey and Paul Ammann. Us-
ing model checking to analyze network vul-
nerabilities. In Proceedings 2000 IEEE Com-
puter Society Symposium on Security and
Privacy, Oakland, CA, May 2000. To Ap-
pear.



